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Clay minerals and their synthetic analogs posgeasifec properties, such as intercalation, ion
exchange and swelling, as a result of the variaast§ of their layered structure (Bergaya and byagal
2006; Zhang et al., 2010). In particular, theriliatger space introduces steric effects which premot
the selectivity of catalysis and adsorption (Zhbalg 2004; Tong et al., 2009). In the contehg t
interlayer space of clay minerals can be regardaatgpe of space-confined nanoreactors, which can
be used for the preparation of nanostructured magerFor instance, self-supporting 2-D graphite
films have been prepared using phosphate-treatathmooillonite (mmt) as a template (Isayama et al.,
1996) and metallic nanoparticles have been falaicet the interlayer space of smectite minerals
(Zhou et al., 2006). The interlayer space of ratalay minerals can host guest species either by
adsorption or by ion exchange. Moreover, the sstititlay minerals can well be tuned for promoting
a certain specific feature (Zhou, 2010), for exagation exchange capacity (CEC), delamination
(Zhou et al., 2005; Lagaly et al., 1999) and thencical compaosition of each layer (Tong et al., 2010
thereby providing more choice for space-confinedoneactors to meet the needs for preparing a
specific functional material. Here we show theesipntrollable preparation of graphitic carbon
nitride nanosheets by using the interlayer spasanefctitic clays, namely mmt and synthetic saponite
(spt) as a confined nanoreactor. Also, we desthliethe structure of “card-of—-house” from
delaminated platelets of synthetic hectorite (heat) be used as space-confined reactorsiloring

the formation and growth of zeolitic titanosilicetanaterials.

Carbon nitrides, a class of covalent carbon-nitnog@mpound, exhibit unique properties such as
extreme hardness, catalysis and biocompatibiity.for catalysis, however, bulk carbon nitride
remains inactive mainly because there are no defed¢he graphitic layers (Goettmann et al., 2006).
One solution is to prepare nanostructured graptétrbon nitride (g-CN). Indeed, nanoporous g-CN
shows excellent catalysis in Frieda-Crafts acieratiNevertheless, such nanostructured carbon
nitrides were usually obtained by so-called hardpiate technique by using cost-intensive synthetic
microporous zeolite, mesoporous SBA-15, SBA-16 @anub-silica. So far the preparation of carbon
nitride nanosheet has not been reported yet. Wengrepared a type of g-CN nanosheets by using the
confined interlayer nanospace of layered clayse dreparation was realized by intercalation of mmt
and synthetic spt with cyanamide, following by censhation of cyanamide and then removal of the

clay template. The controllability over the pdgisize of a g-CN nanosheet via different smectite
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clays was also investigated. The prepared solate wharacterized by X-ray diffraction, FTIR, SEM
and TEM. The resultant g-CN nanosheet has a ¢igiof ca. 4.2 nm, and particle size of 50-100
nm when NH"-spt was used (Fig. 1A), while in the case of ntin, particle size is about 100-150 nm
with crystal size of 6.0nm (Fig. 1B, Fig. 2). Tieason for such difference is that mmt and spt
provide different available interlayer space assalt of the difference of CEC and basal spacing.
This work shows that the preparation of g-CN cameilered by judicious choice of layered clay as a
nanosheet template.
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Fig. 1. Powder XRD patterns of samples. (A): &N (condensation of cyanamide at 550°C); (b) g&N
nanosheet (prepared in the interlayer of'Nshponite) (B): (a) mmt; (b) mmt after calcinatiat 550°C for 4 h;
(c) mmt after adsorption of cyanamide; (d) compsftom calcined cyanamide-mmt at 550°C for 4 h.

Fig. 2. TEM images of (A) g-CN, (B) g-CN-spt nahest and (C) g-CN-mmt nanosheet.

Zeolitic titanosilicate-1 materials (TS-1) with Welefined micropore structures are of great interes
due to their potential applications as sensorg|ysts, adsorbents and ion exchangers (Li et @062
Anson et al., 2010). Their performances can beifgigntly improved when nano-sized TS-1
crystallites was used because it resulted in aniebée increase of the specific surface area with a
simultaneous decrease in the pore diffusion resistéXie et al., 2008). In this context, we depeld

a route to tune the formation and orient the grdmthusing the space-confined structure of
delaminated clay minerals. The clay-TS-1 compssitere prepared by hydrothermal nucleation and
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crystallization of TS-1 in an aqueous dispersionlaf minerals. For comparison, mmt, hect and
flurohectorite were used. The catalytic propertiethe typical composites as catalysts were etatlia
in the epoxidation of allyl chloride (AC) to epicinbhydrin (ECH) (Zhou et al., 2009).
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Fig. 3. PXRD patterns of samples. A: a) montitawite (mmt), b) hectorite (hect), c) fluorohedter(Fhect)
B: a) TS-1 and the Clay-TS composites prepared adttition of b) mmt, c) hect, d) Fhect.

Fig. 4. TEM Images of A) TS-1 and B) fluorohectefT S-1 composite (Purified Fhect/TS-1)

As observed from XRD and TEM (Fig. 3, Fig. 4), tieented growth and size of TS-1 can be tuned
by using a clay mineral. Moreover, the resultsigtbthat the existence of impurities of excess
metallic ions such as Nand Li" in the synthetic clay plays a negative role ind¢atalytic
performances of the resultant composite. Neverfiselthe clay-TS-1 composite made from using
purified flurohectorite shows similar catalytic pesties to those of pure TS-1. The conversion©f A
was 68.4% and the selectivity to ECH was 97.3% wif5.2% utilization efficiency of 4D,.
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