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Thai Oxisols derived from mafic rocks exhibit natural magnetization due to the presence of maghemite 

(γ-Fe2O3) and/or magnetite (γ-Fe3O4); however little is known of these significant mineral constituents.  

Eight maghemite/magnetite samples were separated with a hand magnet from surface and subsurface 

horizons of five Oxisols on basalt under a tropical monsoonal environment in Thailand to characterize 

their mineralogy using XRD and Fourier transform infrared spectrometry (FTIR) techniques.  

Ferrimagnetic iron oxide minerals (i.e. maghemite/magnetite) were the most abundant constituents of 

the magnetic fraction with appreciable amounts of antiferromagnetic iron oxides (i.e. hematite and 

goethite) and diamagnetic minerals (i.e. kaolinite, gibbsite and quartz) (Fig. 1).  The inclusion of non 

ferrimagnetic impurities in all magnetic samples is interpreted as a consequence of aggregation by iron 

oxides creating stable silt size aggregates, which are characteristics of Oxisols. 

Mean coherently diffracting length (MCD) calculated from the width of reflections at half maximum 

using the Scherrer formula (Schulze, 1984), for maghemite/magnetite are presented in Table 1.  The 

MCD311 of maghemite/magnetite varies from 17 nm (Ti soil) to 36 nm (Nb soil).  Maghemite crystal 

size in Nb soil that has developed under higher rainfall conditions is larger than for Ti soil, which may 

indicate that microclimate exerts an influence on crystal growth of the maghemite/magnetite, though 

differences in the nature of their parent material should also be considered.  Amounts of metal 

substituted in the magnetic minerals were very small and small substitutions do not change unit cell 

dimension (UCD).  MCD220 of maghemite/magnetite ranges from 18 – 39 nm which resemble values 

obtained from Chinese loess magnetite (e.g. 30 nm, Chen et al., 2005) but it is rather larger than values 

the reported values for maghemite formed by dehydroxylation of hydrated ferric oxides in a bush fire 

(e.g. ~12 nm, Grogan et al., 2003) and is smaller than values for synthesized magnetite (e.g. 62 nm, 

Schwertmann and Murad, 1990).  There are very close positive linear relationships of MCD220 with 

MCD311 (R
2 = 0.80) and MCD511 (R

2 = 0.86) with no relationships between MCD dimensions and unit-

cell dimension. 
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Fig. 1.  X-ray diffraction patterns of randomly oriented maghemite/magnetite separates from Oxisols.  
K = kaolinite, G= gibbsite, Q = quartz, MH = maghemite/magnetite, H = hematite and Gt = goethite. 
 

Table 1.  Unit-cell a and mean coherently diffracting length (MCD) values for maghemite/ magnetite calculated 
from XRD line broadening. 

Sample Maghemite/magnetite 

MCD MCD MCD Unit-cell 
 

(220) (311) (400) dimension a 
 (-----------nm----------) (Å) 

Nb1AP 29 30 22 8.359 
Nb1Bt3 41 32 22 8.356 
Nb2AP 36 36 28 8.354 
Nb2Bto1 39 35 28 8.351 
Ti3AP 25 18 31 8.368 
Ti3Bto1 21 23 17 8.358 
Ti1AP 18 17 16 8.398 
Ti2AP 24 24 16 8.35 
Average  29 27 31 8.362 
s.d. 8.6 7.3 19 0.016 
Magnetite reference valueA - - - 8.3455 
Magnetite reference valueA - - - 8.3967 

ASchwertmann and Murad (1990) 
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Unit-cell dimension was calculated using the UnitCell program (Holland and Redfern, 1997), from 

corrected positions of the maghemite/magnetite (220), (311), (400) and (511) reflections.  The unit-

cell a dimension of most maghemite/magnetite samples is close to 8.35 nm indicating the dominance 

of maghemite rather than magnetite except for the Ti1Ap sample that has a larger unit-cell dimension 

(8.398 Å) that is consistent with magnetite.  There is slight shift of all maghemite peaks towards lower 

angles as compared to the magnetite peak (Fig. 1).  Our values of the unit-cell a dimension can be 

related to values for appropriate end member minerals, i.e., magnetite (8.3967 Å; JCPDS 19- 62a), 

maghemite (a = 8.3455 Å; Schwertmann and Murad, 1990).  

FTIR spectra of 13-mm diameter pressed discs (1 mg sample 1:170 mg KBr) were obtained using a 

Perkin-Elmer Spectrum One Fourier transform infrared (FTIR) spectrometry over the range 4000–400 

cm-1 with a 4 cm-1 resolution.  FTIR spectra of maghemite/magnetite separate samples indicate the 

presence of hematite, maghemite and kaolinite (Fig. 2).  The IR spectrum of magnetite is absent as it 

would exhibit a broad absorption band at 570 (Russell and Fraser, 1994).  Maghemite show a very 

small broad absorption band at 694 cm-1.  Hematite exhibits strong absorption bands at 430, 470 and 

540 cm-1 (Cornell and Schwertmann, 1996).  The spectra show the OH-deformation bands at 914, 

1010, 1035 and 1100 cm-1 with OH stretching bands at 3620 and 3700 cm-1 indicating the presence of 

kaolinite.  The absence of quartet of OH stretching bands at 3620, 3527, 3464 and 3380 cm-1 for 

gibbsite and of strongly hydrogen-bonded OH at 3153 cm-1 and OH deformation bands at 893 and 794 

cm-1 for goethite (Russell and Fraser, 1994) confirm XRD results that these minerals were not present 

in the magnetite separates. 

Calculation of unit-cell dimension is highly suitable for the characterization of maghemite/magnetite 

but conventional XRD is not the optimum procedure.  We will next use the synchrotron XRD 

technique that offers high precision, improved resolution of reflection and much greater sensitivity.  
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Fig. 2.  FTIR spectra of maghemite/magnetite separates from Oxisols. 
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